From a timely Bitcoin reality check; on a related note, see Blockchain’s Occam problem | McKinsey & Company
"It’s often said that Bitcoin creates security with math. That’s only partially true. The security behind avoiding the double spend attack is not cryptographic but economic, it’s really just the cost of coordinating to achieve a majority of the computational power. Satoshi assumed ‘one-CPU, one-vote’ which made it plausible that it would be costly to coordinate millions of miners. In the centralized ASIC world, coordination is much less costly. Consider, for example, that the top 4 mining pools today account for nearly 50% of the total computational power of the network. An attack would simply mean that these miners agree to mine slightly different blocks than they otherwise would.Bitcoin is Less Secure than Most People Think | Marginal Revolution
Aside from the cost of coordination, a small group of large miners might not want to run a double spending attack because if Bitcoin is destroyed it will reduce the value of their capital investments in mining equipment (Budish analyzes several scenarios in this context). Call that the Too Big to Cheat argument. Sound familiar? The Too Big to Cheat argument, however, is a poor foundation for Bitcoin as a store of value because the more common it is to hold billions in Bitcoin the greater the value of an attack. Moreover, we are in especially dangerous territory today because bitcoin’s recent fall in price means that there is currently an overhang of computing power which has made some mining unprofitable, so miners may feel this a good time to get out."
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.