Still striving to bring the Semantic Web to fruition
A helping hand from humans, occasionally, will be part of the answer. For the first six months, NELL ran unassisted. But the research team noticed that while it did well with most categories and relations, its accuracy on about one-fourth of them trailed well behind. Starting in June, the researchers began scanning each category and relation for about five minutes every two weeks. When they find blatant errors, they label and correct them, putting NELL’s learning engine back on track.
When Dr. Mitchell scanned the “baked goods” category recently, he noticed a clear pattern. NELL was at first quite accurate, easily identifying all kinds of pies, breads, cakes and cookies as baked goods. But things went awry after NELL’s noun-phrase classifier decided “Internet cookies” was a baked good. (Its database related to baked goods or the Internet apparently lacked the knowledge to correct the mistake.)
Smarter Than You Think - Aiming to Learn as We Do, A Machine Teaches Itself - NYTimes.com
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.